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Abstract

Objective. Corneal confocal microscopy (CCM) is a rapid and non-invasive ophthalmic imaging
technique that can reveal corneal nerve fiber. The automatic segmentation of corneal nerve fiber in
CCM images is vital for the subsequent abnormality analysis, which is the main basis for the early
diagnosis of degenerative neurological systemic diseases such as diabetic peripheral neuropathy.
Approach. In this paper, a U-shape encoder—decoder structure based multi-scale and local feature
guidance neural network (MLFGNet) is proposed for the automatic corneal nerve fiber segmentation
in CCM images. Three novel modules including multi-scale progressive guidance (MFPG) module,
local feature guided attention (LFGA) module, and multi-scale deep supervision (MDS) module are
proposed and applied in skip connection, bottom of the encoder and decoder path respectively, which
are designed from both multi-scale information fusion and local information extraction perspectives
to enhance the network’s ability to discriminate the global and local structure of nerve fibers. The
proposed MFPG module solves the imbalance between semantic information and spatial information,
the LFGA module enables the network to capture attention relationships on local feature maps and the
MDS module fully utilizes the relationship between high-level and low-level features for feature
reconstruction in the decoder path. Main results. The proposed MLEGNet is evaluated on three CCM
image Datasets, the Dice coefficients reach 89.33%, 89.41%, and 88.29% respectively. Significance.
The proposed method has excellent segmentation performance for corneal nerve fibers and
outperforms other state-of-the-art methods.

1. Introduction

The geometric and topological features such as length, density, and tortuosity of corneal nerve fibers are
important indicators for the early diagnosis of degenerative neurological systemic diseases such as diabetic
peripheral neuropathy (Daousi et al 2004, Mehra et al 2007, Tavakoli et al 2010a, Kang and Kim 2015, Li et al
2019), human immunodeficiency virus (Kemp et al 2017), Parkinson’s disease (Misra et al 2017), multiple
sclerosis (Petropoulos et al 2017) and various dementias (Ponirakis ez al 2019, Testa et al 2020), in which the thin
nerve fibers are affected first predominantly (Petropoulos et al 2020). Corneal confocal microscopy (CCM)
(Tavakoli etal 2010b) is a rapid and non-invasive ophthalmic imaging technique that can reveal corneal nerve
fiber well. As CCM imaging is widely and fRequently used in disease screening and clinical trials, automatic and
accurate methods for corneal nerve fiber segmentation in CCM images are urgently needed, which is the basis
for the quantitative analysis of geometric and topological features. Figure 1 shows some CCM images with
different intensity distributions, contrasts, and tortuosity levels in which corneal nerve fibers are curvilinear
structures with various orientations, lengths, and thicknesses. As can be seen from figure 1, corneal nerve fibers
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Figure 1. Corneal confocal microscopy(CCM) images with different intensity distributions, contrasts and tortuosity levels.

may appear very faint due to differences of imaging depth, and CCM images also contain small bright and non-
nerve fiber structures (usually cells), which increases the challenge of identifying nerve fibers.

1.1. Traditional machine learning based methods

There are many traditional machine learning based methods for corneal nerve fiber segmentation including
filtering based methods (Dabbah et al 2010, 2011, Ferreira et al 2012, Poletti and Ruggeri 2013, Annunziata et al
2016), clustering based methods (Scarpa et al 2008, Ronneberger et al 2015, Chen et al 2016, Lagali et al 2018) and
classification based methods (Wang et al 2020, Zhong et al 2022). (1) Filtering based methods: Dabbah et al
proposed a dual-model corneal nerve fiber detection algorithm based on Gabor and Gaussian filters (Dabbah
etal2010). They proposed a multi-scale adaptive dual-model based detection algorithm later, which utilized the
curvilinear structure property of the nerve fibers (Dabbah et al 2011). Ferreira et al proposed a wavelet transform
filtering based phase symmetry analysis to identify the nerve structures and used morphological operations for
nerve reconstruction, in which the reconstruction performance dependents on the selection of correct seed
points and needs sophisticated post-processing (Ferreira et al 2012). (2) Clustering based methods: Poletti et al
identified a set of seed points and connecting seeds by means of minimum cost paths to trace nerve fibers (Poletti
and Ruggeri 2013). Aunnunziata et al proposed a hybrid nerve fiber segmentation method, which consisted of a
scale and curvature-invariant ridge detector based appearance model and a K-means clustering based context
filters. It was specifically designed for tortuous and fragmented structures and the segmentation results were
used for the further tortuosity estimation (Annunziata et al 2016). Scarpa et al proposed a nerve tracing method
based on Gabor filter and fuzzy C-means clustering, in which several post-processing procedures were adopted
to remove false recognitions and to link sparse segments into continuous structures (Scarpa et al 2008). (3)
Classification based methods: Chen et al used dual-model filter and dual-tree complex wavelet transform based
feature descriptors to training the neural network /random forest for nerve fiber detection. The detection results
were used for the evaluation of nerve fiber quantification (Chen et al 2016). Lagali et al proposed a support vector
machine based method for nerve fiber recognition (Lagali et al 2018). As traditional machine learning based
methods are not end-to-end, they are generally less efficient and accurate.

1.2. Deep learning based methods

With deep learning showing its strong superiority, more and more studies have focused on convolutional neural
network based networks to segment structures with curvilinear characteristics, such as nerve fiber and blood
vessel. There are few deep learning based methods focusing on corneal nerve fiber segmentation. Considering
blood vessels and nerve fibers are both curvilinear structures with similar characteristics, it is worth learning
from the methods for blood vessel segmentation task. There are many methods for retinal vessel segmentation
based on U-shape encoder—decoder structure (Ronneberger et al 2015). Zhong et al proposed MMDC-Net to
extract multi-layer and multi-scale information to sharpen the vessel details for retinal vessel segmentation
(Zhong et al 2022). Wang et al proposed RVSeg-Net with dilated convolution for retinal vessel segmentation
(Chenetal 2017, Wang et al 2020). However, the use of dilated convolution may lead to the loss of detailed vessel
information while increasing the receptive field. Sun et al proposed UCR-Net to fuse context attention
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information with context attention exploration module and global and spatial attention module to capture
context features for vessel segmentation (Sun et al 2022). Gu et al proposed CE-Net which used the pretrained
ResNet as backbone and was embedded with context extractor module for vessel segmentation (He et al 2016,
Guetal2019). But five downsampling operations in ResNet may destroy the structure of thin vessels. Feng et al
proposed CPFNet which combined two pyramidal modules to fuse global and multi-scale context information
and shew good performance on four challenging medical image segmentation tasks including retinal linear
lesion segmentation in indocyanine green angiography (ICGA) images (Feng et al 2020). There are also some
networks based on the U-shape encoder—decoder structure for the corneal nerve fiber segmentation. U-Net was
directly used for corneal nerve fiber segmentation in (Colonna et al 2018, Williams et al 2020) for the following
analysis. Zhang et al incorporated attention gatemodules to improve the network’s ability to distinguish the
nerve fiber from background. However, this network did not take advantage of multi-scale information, which
is important for the simultaneous segmentation of thick and thin nerve fibers (Zhang et al 2020). Mou et al
proposed the CS-Net (Mou et al 2019) embedded with channel and spatial attention module to capture the
attention relationship in channel direction and spatial direction for nerve fiber centerline tracing, which was
later extended to CS? -Net (Mou et al 2021) for dealing with 3D curvilinear structure segmentation. Chen et al
developed a modified UNet++ (Zhou et al 2018) model (by adding skip connections in the upsampling path) for
nerve fiber segmentation and developed a centerline extraction algorithm based on neighborhood statistics
(Chen etal2021). However, the added dense skip connections in U-Net++ did not result in a significant
improvement in segmentation performance. Yang et al proposed a multi-discriminator adversarial
convolutional network (MDACN), where both the generator and the two discriminators emphasize multi-scale
feature representations, combined with an improved loss function which enables the network to pay more
attention to thin fibers (Yang et al 2021).

1.3. Overview and contributions

The difficulty of nerve fiber segmentation in CCM images mainly lies in the thin and faint nerve fibers and the
low contrast of the images. To address these difficulties, we propose a novel multi-scale and local feature
guidance neural network (MLFGNet) embedded with three novel modules, including multi-scale progressive
guidance (MFPG) module, local feature guided attention (LFGA) module, and multi-scale deep supervision
(MDS) module, which are designed from both multi-scale information fusion and local information extraction
perspectives to enhance the network’s ability to discriminate the global and local structure of nerve fibers. In
order to recover more thin and faint fiber related information in the decoding stage and suppress background
noise, the MFPG module is designed, which uses high-level features to guide low-level features and aggregates
information level by level to shrink the information gap between different levels progressively. In order to
improve the network’s ability to discriminate nerve fibers with low contrast, the LFGA module is proposed.
LFGA module first splits the feature map into m patches. Then pixel-wise correlation and linear dependency are
captured in parallel on each patch, which enables the network to pay more attention to local features. To achieve
the efficient optimization of the network during training, the MDS module is designed, which allows the
gradient information to flow between different stages in the decoder sufficiently in the backpropagation. The
main contributions of this paper are as follows:

(1) Wepropose anovel MLFGNet equipped with MFPG, LFGA, and MDS modules for corneal nerve fiber
segmentation.

(2) From the perspective of taking full use of features from different layers and scales, the proposed MFPG
module can solve the imbalance between the semantic information and spatial information which enhances
the network’s ability to recover the structure of nerve fibers, and the MDS module can fully utilize the
relationship between high-level and low-level features for feature reconstruction in the decoder path which
turther optimizes the performance of the network and improves its optimization efficiency.

(3) From the perspective of highlighting local features, the proposed LFGA module enables the network to
capture pixel-wise correlation and linear dependency on local feature maps, which can improve the
network’s ability to discriminate faint and thin nerve fibers.

(4) The proposed MLFGNet is evaluated on two public corneal nerve fiber datasets and one in-house dataset
and achieves state-of-the-art segmentation performance.

The rest of this paper is organized as follows: in section 2, we introduce the detailed structure of the proposed
MLFGNet. Section 3 presents experimental settings, and the results, including ablation experiments and
comparison experiments with state-of-the-art methods. Conclusion is presented in section 4.
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Figure 2. The overall architecture of the proposed MLFGNet. The original image is fed into the encoder to obtain the high-level
features, and the local attention information is captured the by the proposed local feature guided attention (LFGA) module. Next, the
features are recovered by the decoder, the multi-scale information flows are introduced by the proposed multi-scale progressive
guidance (MFPG) module. Meanwhile, the multi-scale deep supervision (MDS) module is introduced as deep supervision
mechanism. The final predicted result is obtained via a threshold segmentation operation with threshold of 0.5.

2. Methods and materials

2.1. Overview of the architecture of MLFGNet

Figure 2 shows the whole framework of the proposed multi-scale feature guidance neural network (MLFGNet),
which is based on a U-shape encoder—decoder structure and consists of five parts: the encoder path, the multi-
scale progressive guidance (MFPG) module, the LFGA module, the MDS module, and the decoder path.

2.2. Feature encoder and decoder

The encoder path includes four levels. As can be seen from figure 1 that nerve fiber is a kind of thin and
curvilinear structure, keeping its spatial information as much as possible while extracting its deep semantic
information is essentially necessary. For this purpose, in the first two levels (Level 1 and 2) of the encoder, we use
conv-block as U-Net (Ronneberger et al 2015) to extract spatial features, which consists of two consecutive 3 x 3
convolutions, batch normalization, and ReLu activation. In the last two levels (Level 3 and 4) of the encoder, pre-
trained ResNet layers are employed to extract deep semantic features. In the decoder stage, the decoder fuses the
feature maps from the corresponding encoder module through skip connection and then upsamples the fused
feature map via bilinear upsampling.

2.3. Multi-scale feature progressive guidance module

In the decoder path, the semantic and spatial information will gradually lose in the process of feature
upsampling. To address this problem, U-Net (Ronneberger et al 2015) introduces skip connection to recover
this information. However, some previous researchers have found that the simple fusion of low-level and high-
level features could be less effective due to the information gap between different levels (Zhang et al 2018, Guo
etal2019). These studies tried to deal with this problem (Feng et al 2020, Xu et al 2020), but they simply
upsampled the deep features and concatenated with the shallow features, in which the information gap between
different levels was not fully considered. In this paper, we propose a novel multi-scale feature progressive
guidance (MFPG) module, in which information is progressively aggregated from high-level features to low-
level ones to shrink the information gap between different levels. MFPG module can effectively suppress
background noise and retain detailed spatial and semantic information.

Figure 3 shows the MFPG module between Level 1 of the encoder path and Stage 1 of the decoder path.
Given a feature map X; € RG*HXWs (C; represents the channel number of X3, and H; and Wj represent the
height and width of X;) from Level 3 of the encoder and an upsampling ratio k ( k is set to 2 here). First, a
dynamic upsampling was implemented instead of interpolation upsampling. To be specific, let X5 through a
content encoder layer (composed of consecutive 3 x 3 convolution, batch normalization, and Relu activation)
and generate a new feature map X5 € RC*k*kxHxWs Then, sub-pixel convolution (Shi et al 2016) with stride
% (k=2)is used to transform Xi"to X;P € RC*HokxWokk yhich is learnable and more flexible than bilinear

upsampling. Concatenate X, P with Level 2 feature map X; to generate XS4 ¢ R2*CoxHaxWa which integrates
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the feature information from the local level (Level 2) and the higher level (Level 3). We also let X{4¢ through a
content encoder layer to generate a new feature map X} € RG*k*kxH:x W2 and use sub-pixel convolution to
transform itto X,P € RG*HrkkxWokk Then concatenate X, P to Level 1 feature map X, to generate

XxSuide ¢ R2*GxHixW which fuses the features from X;, X, and X; progressively and are both rich in spatial
details and semantic information, solving the nuisance of feature mismatch caused by information gap between
different levels. Finally, we usea 1 x 1 convolution to adjust the channel of X,%*%¢ to C; and get the output
feature X, € RG*H*Wi The process can be formulated as follows,

X$ude — concat HXZ , Subconv[ﬁ(xg) ”] € RZ¥CoxHyx Wy 1
XSUe  concat HXI’ Subconv[ yg (X Gidey ”] € R2*¥CixHix W, Q)
Xout = f ﬂleuide]] € RC]XH}XW] (3)

Where Sub_conv[-] means sub-pixel convolution, yq (-) means content encoder operation. concat [ - ]| means
concatenation operation. f [| - | means 1x 1 convolution.

2.4.Local feature guided attention module

Due to the difference in imaging depth, the intensity of corneal nerve fibers in CCM images often varies greatly,
which means that the contrast between nerve fibers and the background varies greatly. In order to enable the
network to pay attention to local feature information and improve the network’s ability to discriminate nerve
fibers with low contrast, inspired by (Shi et al 2016, Wang et al 2018, Yuan et al 2021, Hou et al 2020), a novel
LFGA module is proposed, which splits the feature map into m patches and pixel-wise correlation and linear
dependency are captured in parallel on each patch. Figure 4. shows the architecture of the LFGA module, which
mainly consists of linear dependency capture path and pixel-wise correlation capture path.

Let X;, € RC*Ho*W represent the original input feature and Pi» € RE*H*W i, € [1, m]represent the iy,
patched feature map , in which C denotes the number of channels, Hy and W are the height and width of X;,
and H and W are the height and width of P’» respectively (H = Hy//n, W = Wy/Vm ,missetto 16in this
paper). In the linear dependency capture path, horizontal and vertical pooling layers are applied to the input
feature Pin € RC*H*W first to generate four new feature maps P, Pit € RC*1*W(x; and x, represent max-
pooling and average-pooling in horizontal direction respectively) and P)’;‘l“, P)’;%‘ € RO*Hx1(y, and y, represent
max-pooling and average-pooling in vertical direction respectively), which represent the linear dependency
features captured in the horizontal and vertical directions respectively. Second, P, Pis, ;‘1‘“ and P;‘g are
expanded to original image size, concatenated and followed by a 1 x 1 convolution and sigmoid activation to
obtain the attention map P,i), € RIXW Third, element-wise multiplication is performed between P and the
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Figure 4. Local feature guided attention (LFGA) module. Pixel-wise correlation and Linear dependency are captured on local feature
map to improve the network’s ability to discriminate nerve fibers.

attention map P;y to generate a new feature map P;lyh, which fuses linear dependencies both in horizontal and
vertical directions. Fourth, a new feature Pi» € RC*!*1s obtained from P’» via a global average pooling layer
followed by sigmoid activation to capture the global information. Finally, P is multiplied with P,’C;i‘ to generate
the output feature map P,,, which cannot only capture linear dependencies from different directions, but also
obtain the global information. The construction of the linear dependency capture path can be formulated as

follows,

P}, = & [f (concat[Pyy, P8, Pjy, P8])] € RV 4
Pj» = Mul [[Pi», P ] € REXHxW 5)
P = Mul [§(Pjm), Pir]] € REHXW, (6)

where § (') means sigmoid activation, f(-) means 1 x1 convolution, Mul [ - || means element-wise
multiplication, concat[-] means concatenation operation.

In pixel-wise correlation path, the input feature map Pin € RE*H*W jsreshapedto Q € RO*N, K € RO*N
and V € RE*N first, where N=H x W. Ei]/- is obtained by applying a softmax layer on the matrix multiplication
of the transpose of Q and K, which denotes the j, position’simpact on the i, position. Second, matrix
multiplication is performed between E,-; and V'to obtain the attention enhanced feature and reshape it to
RCXHXW 0 construct the pixel-wise correlation based feature Pjk,,, which can help the pixels belonging to the
nerve fibers promote each other and enhance the contrast between nerve fibers and background. The acquisition
of the pixel-wise correlation can be formulated as follows,

,exp(Q - K N
Ej= — = eER )
szleXP(Qy - Ky)

i N
éﬂI‘(V — Zi:1 VzEé c RCXHXW(S)

Finally, the linear dependency feature Pt , the pixel-wise correlation feature 3‘;<V and the original input

xyz>

feature Pt are added to get feature Pl Pi features are reorganized into the final global reconstructed feature

out*
LFGA
Xout >

Pit — pin + pél;(v + Pin ¢ RCXHXW(9)

out xyz
m
Xt =R || D Pin|| € ROxHoxWo (10)

ith=1

where 9R(-) means the reorganization operation.
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Figure 5. Multi-scale deep supervision (MDS) module. Semantic information from the deep layers are transfered to the shallow ones
in the decoder path, which fully utilizes the relationship between high-level and low-level features for feature reconstruction.

2.5. Multi-scale deep supervision module

There are some empirical evidences demonstrating that the deeper the neural network, the more difficult it is to
be optimized. Many previous studies utilized deep supervision mechanism to alleviate this problem (Fu et al
2018, Qinetal 2020, Wu et al 2021). M-Net (Fu et al 2018) generated side-output prediction maps as deep
supervision, in which the weights for all the side-output layers are set equally. This may cause the ignorance of
the different characteristics of the different side-output layers. SCS-Net (Wu et al 2021) set weights adaptively for
the different side-output layers and got better performance. However, none of them have considered the
relationship between high-level features and low-level features in the decoder path, which helps reduce the
semantic information gap between different stages.

To fully utilize the relationship between high-stage and low-stage features for feature reconstruction in the
decoder path, a novel MDS module is proposed, which is shown in figure 5. The MDS module enables feature
map in each stage to interact with the ones in other stages to fuse information between low and high stages first.
Then, the fused feature map is used to generate the side-outputs. Take the side-output of Stage 2 (Side_ 2) as an
example. Feature map of Stage 3 is first up-sampled. Then, through a 1 x 1 convolution, it is concatenated with
the feature map of Stage 2 to generate the fused feature map. Finally, the side-output of Stage 2 (Side_ 2) is
generated by applyinga 1 x 1 convolution to the fused feature map. The side-outputs transfer semantic
information from the deep stages to the shallow ones, which can propagate effective information through
backward propagation and let the auxiliary loss better optimize the network. The side-outputs from different
stages can be formulated as follows,

Side_1 = 1 (Up[Stage3]) (11)
Side_2 = y(concat[Up[Stage2], ¢ (Up[Stage3]]) (12)
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Table 1. Details of the datasets used to evaluate the proposed method.

Datasets Number (384 x 384) Tortuosity level (numbers) Public/Private Source
Dataset 1 90 Normal (50) pathological (40) Private Zhongshan Ophthalmic Center
Dataset 2 114 Level 1 (30) Public Cixi Institute of Biomedical Engineering
Level 2 (30)
Level 3 (30)
Level 4 (24)
Dataset 3 30 Level 1(10) Public University of Padova
Level 2 (10)
Level 3 (10)
Side_3 = O(concat[Stagel, ¢ (Up[Stage2]), 1 (Up[Stage3])]) (13)

where Side_1, Side_2 and Side_3 represent the side-outputs of Stage 1, Stage 2 and Stage 3 respectively, ¢(-),
©(+), ¢(-)and O(-) mean 1 x 1 convolution with parameters % ¥, % ¢, # ¢ and # © respectively, Up(-)means
the bilinear interpolation, and concat [ - || means the concatenation operation.

2.6. Training and inference detail

To overcome the data imbalance problem, the Dice loss is used as the segmentation cost function % to make
the network pay more attention to the foreground. The binary cross entropy (BCE) loss is used as the deep
supervision loss %4. x to fully leverage the multiple side-outputs.

N
2y gp +e
Grg=1— 71— (14)
Y& +p)te
i=1
1N
n%ide_k = *Nzgi : log(P,) + (1 - gl) . 10g(1 - P,)(k =12, 3)> (15)

i=1
where N represents the total number of pixels in each feature map, g; € {0,1} and p, € [0,1] represent the value
of the iy, pixel in the ground truth and the predicted probability map respectively. In order to speed up the
convergence in the network training, the Laplace smoothing factor ¢ is added to %, is which is set to 1 in our
experiments.
The total loss function %o, adopted for the proposed MLFGNet is the combination of %, and Zide .
which is defined as follows,

3
Lrotal = Dgseg + Z )\krg)sidek(l6)
k=1

where )\ is a trade-off between segmentation loss %, and deep supervision loss ;4. &. In our experiments,
)\1 = 1, )\2 =0.8and )\3 =0.4.

2.7.Datasets

As shown in table 1, three CCM image Datasets were used to evaluate the performance of the proposed
MLFGNet. Images in all three Datasets were obtained by Heidelberg Retina Tomograph with a Rostock Cornea
Module microscope. The size of all images is 384 x 384. The field of view (FOV) is 400 pm x 400 pm. The
ground truth of three datasets are manually labeled under the supervision of an ophthalmologist with extensive
clinical experience.

Dataset 1 is a private dataset acquired from Zhongshan Ophthalmic Center, China, containing 90 two-
dimensional CCM images. Among them, 50 images were taken from four normal eyes and 40 from four eyes
with diabetic keratopathy. The collection and analysis of image data were approved by the Institutional Review
Board of Zhongshan Ophthalmic Center and adhered to the tenets of the Declaration of Helsinki.

Dataset 2 is a public CCM image dataset with 404 images, provided by the Cixi Institute of Biomedical
Engineering, Chinese Academy of Sciences (Mou et al 2021). According to the tortuosity of never fiber, the
images were graded into levels 1—4. As there are only 24 images in level 4, 30 CCM images are randomly selected
from each other three levels to keep the number of images of different levels balanced. So 114 images are
included in Dataset 2.

Dataset 3 is also a public CCM image dataset provided by the Laboratory of Biomedical Imaging, University
of Padova, Italy (Scarpa et al 2011), which contains 30 CCM images from 30 normal or pathological subjects
(diabetes, pseudoexfoliation syndrome, and keratoconus).

8
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Table 2. Ablation experiments about the proposed MFPG, LFGA, and MDS modules on Dataset 1 (Mean = Standard

deviation).

MFPG LFGA MDS Dice (%) ToU (%) Sen (%) AUC (%) p-value
I 0 o 87.34 +5.02 77.85 +7.55 86.75 +5.34 92.78 +2.69 —
O O v 88.25 +4.82 79.29 £7.39 88.72 £4.93 93.75 £2.50 <0.001
0 v o 87.69 +4.62 78.35 +7.05 86.90 +4.94 92.88 +2.47 0.004
v O 0 87.97 +4.69 78.82 +£7.19 88.59 +4.65 93.65 +2.31 <0.001
O v v 88.45 +£4.51 79.57 +£6.98 89.28 +£3.96 94.02 £2.01 <0.001
v O v 88.78 +4.71 80.13 +7.31 88.24 +5.22 93.60 +2.64 <0.001
v v 0 88.27 +4.90 79.34 +7.54 87.69 +4.91 93.30 +£2.50 <0.001
v v v 89.33 £4.22 80.97 +6.62 88.73 £+5.02 93.86 +2.50 <0.001

A four-fold cross-validation strategy is used to objectively evaluate the proposed MLFGNet, which is also
adopted in all the comparison experiments. For Dataset 1, the images were randomly divided into four groups
according to subjects, and each group contained both normal and pathological subjects. For Dataset 2 and
Dataset 3, the images were randomly divided into four folds according to the levels of tortuosity.

2.8. Evaluation metrics

Five evaluation metrics including Dice, intersection over union (IoU), sensitivity (Sen), specificity (Spe) and area
under the ROC curve (AUC) are employed in our experiments. To evaluate the statistical significance of the
improvement, the Wilcoxon signed-rank test between the proposed MLFGNet and other methods is conducted
on Dice coefficient in both comparison and ablation experiments.

2.9. Implementation details

All the experiments are implemented on the public Pytorch platform and NVIDIA RTX 2080Ti with 11GB
memory. In the training process, stochastic gradient descent (SGD) algorithm with poly learning rate policy is
used to optimize the weights of the network. The learning rate Ir is as follows,

P
Ir = Iry x (1 - Iter) (17)
Iter;

where Iter and Iter; represent the current number of iterations and the total number of iterations respectively.
The basic learning rate I, is set to 0.01 and the declining index p is set to 0.9. The batch size is set to 2 and the
epochs is set to 80.

3. Results and discussion

3.1. Ablation experiments
3.1.1. Ablation experiments about the proposed modules
Eight ablation experiments about the proposed LFGA module, MFPG module, and MDS module are conducted
on Dataset 1, Dataset 2, and Dataset 3, including Baseline (only including the encoder path and the decoder path
shown in figure 2), Baseline with MDS module (Baseline + MDS), Baseline with LFGA module (Baseline +
LFGA), Baseline with MFPG module (Baseline + MFPG), Baseline with MDS and LFGA module (Baseline +
MDS + LFGA), Baseline with MFPG and MDS module (Baseline + MFPG + MDS), Baseline with MFPG and
PA module (Baseline + MFPG + LFGA) and Baseline with MFPG, LFGA and MDS module (Baseline + MFPG
+ LFGA + MDS, the proposed MLFGNet). The results of ablation experiments on Dataset 1, Dataset 2, and
Dataset 3 are shown in tables 2, 3 and 4 respectively. For Dataset 1, compared with the Baseline, the
improvements on Dice index are 0.91%, 0.35%, 0.63%. 1.11%, 1.44%, 0.93% and 1.99% and reach 88.25%,
87.69%, 87.97%, 88.45%, 88.78%, 88.27% and 89.33% respectively. For Dataset 2, as shown in table 3, the
improvements on Dice index are 0.8%, 0.26%), 0.56%), 0.85%, 1.27%, 0.87% and 1.43% and reach 88.78%,
88.24%, 88.54%, 88.83%, 89.25%, 88.85%, and 89.41% respectively. For Dataset 3, as shown in table 4, the
improvements on Dice index are 1.34%, 1.12%, 1.58%, 3.17%, 4.22%, 3.3%, and 5.48%, and reach 84.15%,
83.93%, 84.39%, 85.98%, 87.03% ,86.11%, and 88.29% respectively. All the p-values (Dice index, Wilcoxon
signed-rank test) are less than 0.05, indicating that all the proposed modules have achieved significant
improvements compared with the Baseline.

Figure 6 shows the segmentation results of ablation experiments, which show that the proposed MFPG
module, LFGA module, and MDS module can improve the segmentation performance of the proposed network
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Figure 6. The segmentation results of ablation experiments in our study. (a) Original images; (b) detailed view; (c) ground truth; (d)
Baseline; (e) Baseline + MFPG; (f) Baseline + LFGA; (g) Baseline + MDS; (h) Baseline + MFPG + LFGA; (i) Baseline + MFPG +
MDS; (j) Baseline + LEGA + MDS; (k) proposed.

Table 3. Ablation experiments about the proposed MFPG, LFGA, and MDS modules on Dataset 2 (Mean =+ Standard

deviation).
MFPG LFGA MDS Dice (%) ToU (%) Sen (%) AUC (%) p-value
O O 87.98 +4.45 78.80 +6.50 87.60 +6.51 93.20 +3.18 —

O 9 \/ 88.78 £3.89 80.04 £6.03 88.42 £5.37 93.66 +2.64 <0.001
O \/ O 88.24 £4.17 79.19 £6.31 87.54 +6.44 93.19 £+3.14 0.004
v ¢ ¢ 88.54 +4.06 79.67 £+ 6.26 88.00 &+ 5.75 93.45 + 2.83 <0.001
¢ \/ \/ 88.83 + 4.32 80.15 £+ 6.58 88.25 £+ 6.62 93.57 + 3.22 <0.001
\/ O \/ 89.25 + 3.84 80.79 £+ 5.99 89.02 £+ 5.51 93.96 £+ 2.71 <0.001
v v ¢ 88.85 + 3.82 80.14 + 5.98 87.85 + 5.81 93.40 + 2.84 <0.001
\/ \/ \/ 89.41 + 3.74 81.05 + 5.88 88.38 + 5.87 93.69 + 2.87 <0.001

Table 4. Ablation experiments about the proposed MFPG, LFGA, and MDS modules on Dataset 3 (Mean =+ Standard

deviation).

MFPG LFGA MDS Dice (%) ToU (%) Sen (%) AUC (%) p-value
¢ O O 82.81 + 5.57 71.04 & 8.06 82.95 + 7.59 90.84 + 3.72 —
¢ 0 v 84.15 + 5.62 73.03 &+ 8.36 82.82 + 8.05 90.91 + 3.97 <0.001
9 \/ O 83.93 £+ 5.00 72.61 + 7.35 83.38 + 6.99 91.13 £+ 3.42 0.004
v O ¢ 84.39 + 5.48 73.37 + 8.14 84.53 + 7.02 91.68 + 3.46 <0.001
¢ v v 85.98 + 5.27 75.77 + 8.06 86.85 + 5.41 92.85+ 2.72 <0.001
\/ % \/ 87.03 £+ 5.08 77.38 + 7.82 86.53 + 6.37 92.81 + 3.19 <0.001
v v O 86.11 & 4.63 75.90 + 7.03 86.07 + 7.03 92.52 + 3.49 <0.001
v v v 88.29 + 4.11 79.27 £+ 6.51 87.43 + 6.09 93.31 + 3.04 <0.001

effectively. It can also be seen from figure 6 that with the addition of the proposed modules, the breaks in the
topological structure of the nerve fibers are gradually filled and the connectivity is higher.

3.1.2. Ablation experiments about backbones
Table 5 shows the ablation studies of different backbones on all three datasets. The results of MLFGNet/Res
(only use ResNet34 as backbone) and MLFGNet/Conv-block (only use conv-block as backbone) on three
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Table 5. Ablation experiments about different backbones (Mean + Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%)
Dataset 1

MLFGNet/Res 88.37 £+ 3.67 79.46 + 5.68 87.49 £+ 4.80 93.24 + 2.30

MLFGNet/Conv-block 88.32 4 4.54 79.27 £ 7.01 88.10 £ 4.80 93.46 £+ 2.42

MLFGNet 89.33 + 4.22 80.97 £ 6.62 88.73 £ 5.02 93.86 £ 2.50
Dataset 2

MLFGNet/Res 87.57 &+ 3.96 78.10 £ 5.96 86.90 £+ 6.24 92.83 £+ 3.02

MLFGNet/Conv-block 88.65 £+ 4.10 79.84 £+ 6.30 87.93 £ 5.93 93.43 + 2.91

MLFGNet 89.41 + 3.74 81.05 + 5.88 88.38 + 5.87 93.69 + 2.87
Dataset 3

MLFGNet/Res 86.85 + 4.96 77.08 = 7.62 85.70 £ 7.14 92.42 4+ 3.54

MLFGNet/Conv-block 87.31 &+ 5.05 77.81 + 7.78 86.45 £+ 7.37 92.79 &+ 3.67

MLFGNet 88.29 + 4.11 79.27 £ 6.51 87.43 £ 6.09 93.31 £+ 3.04

Table 6. Ablation experiments about different patch numbers in LFGA module on Dataset 1 (Mean + Standard deviation).

m-value Dice (%) IoU (%) Sen (%) AUC (%)

1 88.52 £ 4.57 79.70 £ 7.05 88.48 + 4.47 93.68 £+ 2.25

4 88.18 + 4.93 79.19 £ 7.51 87.12 £+ 5.49 93.04 £+ 2.76

16(selected) 89.33 + 4.22 80.97 £+ 6.62 88.73 + 5.02 93.86 + 2.50

36 88.55 £+ 4.61 79.74 £ 7.10 87.58 £ 4.80 93.29 + 2.41

64 88.20 + 4.91 79.22 £ 7.52 87.18 £+ 5.27 93.06 £ 2.68

144 88.32 + 4.87 79.40 £ 7.43 87.60 £+ 5.07 93.27 &+ 2.56

datasets are not good, which indicate that only using conv-block as backbone is too shallow to extract deep
semantic information and lead to the limited receptive field, resulting in the degradation of the nerve fiber
segmentation performance. Only using ResNet34 as backbone can deepen the depth of the network and increase
the receptive field. Meanwhile, it will destroy the thin and curvilinear structure of nerve fibers and thuslead to
the decline in performance. The best results can be obtained in the proposed MLFGNet, in which 2 conv-blocks
and 2 ResNet34 layers are jointly applied. Specifically, 2 conv-blocks are used in the first and second layers of the
encoder (Level 1 and Level 2) to retain more spatial information of nerve fibers. 2 pre-trained ResNet34 layers
are used in the third and fourth layers (Level 3 and Level 4), which can deepen the network, expand the receptive
field, and obtain rich semantic information. This combination backbone strategy takes into account the spatial
information and semantic information of nerve fibers in the feature extraction and achieves the best
segmentation performance.

3.1.3. Ablation experiments about patch numbers in LFEGA module

Table 6 shows the ablation studies about different patch numbers (171) of LFGA module on Dataset 1. As can be
seen from table 6, too many or too few patches will affect the segmentation performance. When m = 16, the best
result is achieved, which means that the original feature map is split into 16 patches. We select m = 16 in all
experiments.

Figure 7 shows the predicted probabilities of pixels as curvilinear structures before and after applying the
proposed LFGA module respectively. As can be seen from figure 7, without LFGA module, the curvilinear
structures have not been highlighted consistently, which means that the network does not extract significant
curvilinear features. With LFGA module, the network can focus on the curvilinear structures well and suppress
the influence of bright background noise, which means that the LFGA module can extract and aggregate the
curvilinear structure features and enhance the network’s ability to distinguish nerve fibers.

3.2. Comparison experiments

In order to evaluate the performance of our proposed MLFGNet, the proposed segmentation framework is
compared with some state-of-the-art deep learning based segmentation networks, including CS-Net (Mou et al
2019), CPENet (Zhang et al 2020), U-Net++ (Zhou et al 2018), U?-Net (Qin et al 2020), CE-Net (Colonna et al
2018), U-Net (Chen et al 2017), Attention U-Net (Scarpa et al 2011), MDACN (Guo et al 2019), and MMDC-Net
(Chen etal2017). All the experimental implementation details are kept consistent for fair including four-fold
cross validation strategy, learning rate strategy, batch size, etc. The comparison experiment results on the three
datasets are shown in tables 7, 8, and 9 respectively. As can be seen from the tables, the proposed MLFGNet
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Figure 7. The output of the proposed LFGA module on randomly select images. From left to right: the original image, the predicted
probabilities of pixels as curvilinear structure before and after applying the proposed LEFGA module respectively.

Table 7. Comparison results on Dataset 1 (Mean + Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value
CS-Net (Mou etal 2019) 84.95 + 6.44 74.33 £ 8.97 84.15 £ 5.74 91.42 £+ 2.93 <0.001
CPFNet (Feng et al 2020) 85.44 + 4.55 74.85 £+ 6.69 84.78 + 5.37 91.70 + 2.61 <0.001
U-Net++ (Zhou et al 2018) 86.90 £ 5.23 77.20 £ 7.80 85.57 £+ 5.61 92.23 + 2.84 <0.001
UZ—Net(Qin etal 2020) 87.15 £ 5.32 77.6 £ 7.88 85.51 & 5.92 92.23 £+ 2.96 <0.001
CE-Net (Guetal2019) 87.25 + 4.28 77.63 + 6.49 86.44 + 5.13 92.62 + 2.50 <0.001
U-Net (Ronneberger et al 2015) 87.32 £ 5.66 77.91 £+ 8.38 86.12 £+ 5.44 92.52 + 2.78 <0.001
MMDC-Net (Zhong et al 2022) 87.51 £ 4.45 78.06 + 6.80 87.12 £ 4.75 92.99 £+ 2.33 <0.001
Attention U-Net (Oktay e al 2018) 87.42 + 4.97 77.98+4-7.48 87.16 + 5.18 92.98 + 2.59 <0.001
MDACN (Yang et al 2021) 89.21 £+ 4.13 80.77 £+ 6.48 88.40 £+ 4.90 93.72 + 2.45 0.45
MLFGNet 89.33 + 4.22 80.97 + 6.62 88.73 £+ 5.02 93.86 + 2.50 —
Table 8. Comparison results on Dataset 2 (Mean + Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value
CS-Net (Mou etal 2019) 85.32 + 5.33 74.74 £ 7.45 83.48 + 6.59 91.14 + 3.24 <0.001
CPFNet (Fenget al 2020) 85.13 £+ 4.31 74.34 £+ 6.26 83.53 £+ 6.56 91.08 £+ 3.19 <0.001
U-Net++ (Zhou et al 2018) 87.17 £ 4.37 77.52 £ 6.51 86.41 £+ 5.63 92.61 £+ 2.78 <0.001
UZ—Net(Qin etal 2020) 87.46 + 4.19 77.95 £+ 6.36 86.21 + 6.28 92.55 + 3.07 <0.001
CE-Net (Guetal2019) 86.81 £+ 4.51 76.95 + 6.64 85.53 £+ 7.02 92.16 £+ 3.41 <0.001
U-Net (Ronneberger etal 2015) 87.79 £ 4.71 78.51 £ 6.82 86.62 £+ 6.51 92.77 &+ 3.20 <0.001
MMDC-Net (Zhong et al 2022) 87.61 + 4.42 78.21 £+ 6.69 86.24 + 5.74 92.57 + 2.82 <0.001
Attention U-Net (Oktay et al 2018) 88.17 £ 3.86 79.04 £+ 5.97 87.31 &+ 5.50 93.09 £+ 2.70 <0.001
MDACN (Yangetal 2021) 89.08 + 4.13 80.53 £+ 6.16 88.12 £+ 6.00 93.55 + 2.83 <0.001
MLFGNet 89.41 + 3.74 81.05 + 5.88 88.38 + 5.80 93.69 + 2.87 —

outperforms all the state-of-the-art networks on Dataset 1, Dataset 2, and Dataset 3. To evaluate the statistical
significance of the improvement, the Wilcoxon signed-rank test is conducted on Dice coefficient. As can be seen
from tables 8 and 9, all the p-values are less than 0.05, indicating that the proposed MLFGNet has achieved a
significant improvement compared with other networks on Dataset 2 and Dataset 3. As shown in table 7,
although the proposed MLFGNet reaches the best performance, the p-value between the proposed MLFGNet
and MDACN is 0.45, indicating that there is no significant difference between them. The possible reason is that
more than half of the CCM images in Dataset 1 are normal (50/90), that is, most of the CCM images contain
nerve fibers with low grades of tortuosity, which are relatively easy to be segmented. The proposed MLFGNet
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Figure 8. Performances of different methods on all three datasets. Box plots show the median as the center lines, upper and lower
quartiles as box limits, whiskers as maximum and minimum values, yellow diamond as average values. The y-axis represents the dice
coefficient, the x-axis represents the different methods.

Table 9. Comparison results on Dataset 3 (Mean + Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value
CS-Net (Mouetal 2019) 81.37 + 6.30 69.05 + 8.90 80.90 + 7.14 89.80 £ 3.57 <0.001
CPFNet (Feng et al 2020) 81.90 & 5.15 69.66 + 7.36 81.20 & 7.61 89.93 £ 3.78 <0.001
U-Net++ (Zhou et al 2018) 83.95 4+ 5.84 72.76 & 8.57 82.49 + 8.28 90.74 £ 4.09 <0.001
U”-Net (Qin et al 2020) 83.72+ 5.78 72.40 + 8.47 82.54 + 7.84 90.74 £ 3.86 <0.001
CE-Net (Guetal2019) 82.92 4 5.81 71.22 + 8.28 82.25 + 8.34 90.53 £ 4.11 <0.001
U-Net (Ronneberger et al 2015) 85.14 + 5.41 74.51 £ 8.15 84.20 £ 7.09 91.61 + 3.53 <0.001
MMDC-Net (Zhong et al 2022) 84.46 + 4.99 73.42 + 7.48 84.30 £ 5.45 91.63 £ 2.65 <0.001
Attention U-Net (Oktay et al 2018) 84.35 & 5.67 73.34 + 8.47 83.07 £ 7.82 91.03 £ 3.87 <0.001
MDACN (Yangetal 2021) 87.62 + 4.27 78.22 £ 6.78 86.79 £ 5.39 92.97 £ 2.65 <0.001
MLFGNet 88.29 £+ 4.11 79.27 £ 6.51 87.43 £+ 6.09 93.31 £ 3.04 —

achieves stable segmentation performance on all three datasets, indicating that our network is suitable for nerve
fiber segmentation with different grades of tortuosity.

To evaluate the effect of different grades of tortuosity on the nerve fiber segmentation performance, the Dice
indexes are re-calculated according to the tortuosity levels of the image on all three datasets respectively. The
performances of different methods on all three datasets are shown as box plots in figure 8. The proposed
MLFGNet shows the best performance on all three datasets, which also indicates our network is designed to deal
with nerve fibers from both normal subjects and pathological ones.

Figure 9 shows some nerve fiber segmentation results of different networks, including both normal (Row 1)
and pathological (Row 2 and 3) subjects. As can be seen from figure 9, all methods can achieve good
segmentation results for thick nerve fibers, but most of them may fail to detect the faint and thin ones. The
proposed MLFGNet can capture these faint and thin nerve fibers well due to the purposely designed LEFGA

13



IOP Publishing Phys. Med. Biol. 68 (2023) 095026 W Tanget al

A AN A AT AIA
UDDDBLBBDDDD
LA 0007
LT

() D) @ 05

(g) Ch) (i) ()

Figure 9. Segmentation results of different methods. (a) Original images; (b) detailed view; (c) ground truth; (d) the proposed
MLFGNet; (e) MDACN; (f) attention U-Net; (g) U-Net; (h) U?-Net; (i) U-Net++; (j) CE-Net; (k) CS-Net; (1) MMDC-Net.

Table 10. Cross-dataset evaluation (Dataset 2: training set, Dataset 3: validation set, and Dataset 1: test set).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value
CS-Net (Mou etal 2019) 84.20 73.12 85.24 91.82 <0.01
CPFNet (Feng et al 2020) 85.59 75.02 86.46 92.45 <0.01
U-Net++ (Zhou et al 2018) 85.96 75.63 84.95 91.87 <0.01
U%-Net (Qinetal 2020) 86.37 76.29 85.19 92.01 <0.01
CE-Net (Guetal2019) 86.29 76.11 87.71 93.32 <0.01
U-Net (Ronneberger et al 2015) 85.90 75.56 86.45 92.52 <0.01
MMDC-Net (Zhong et al 2022) 87.56 78.10 87.61 93.16 <0.01
Attention U-Net (Oktay et al 2018) 86.33 76.20 84.37 91.65 <0.01
MDACN (Yang et al 2021) 87.97 78.72 88.10 93.42 0.23
MLFGNet 88.12 78.98 87.94 93.37 —

module, which can make the network pay more attention to local feature information and improve its ability to
discriminate nerve fibers with low contrast. The segmentation results of the proposed method are of higher
continuity, with more faint and thin fiber segments detected.

To verify the robustness of the proposed MLFGNet, a cross-dataset evaluation is performed, in which
Dataset 2 (114 images) is used as the training set, Dataset 3 (30 images) is adopted as the validation set, and
Dataset 1 (90 images) is used as the test set. The same cross-dataset evaluation strategy is also adopted for other
methods. As shown in table 10, the proposed MLFGNet achieves the best performance with an average Dice
coefficient of 88.12%. The p-value of the Wilcoxon signed-rank test indicates that there is no significant
difference between the proposed MLEGNet and MDACN. The possible reason is that the proportion of thick
nerve fibers is generally higher than that of thin ones in the CCM images, which means although our method
segments thin nerve fibers better than MDACN, the Dice index is not obviously improved. However, figure 9
shows that the segmentation results of the proposed method have fewer breaks and thus better topological
connectivity.

To further verify the effectiveness and superiority of the proposed method, the intermediate feature maps
from different stages of the decoder path in our proposed MLFGNet and three state-of-the-art networks
including MDACN, U-Net and CE- Net are visualized. Figure 10(a) are the original images and the
corresponding ground truth. As shown in figures 10(b) and (c), by analyzing and comparing the nerve fibers in
the attention maps from Stage 1 to Stage 3, we note that the proposed model can focus on curvilinear structures.
The curvilinear structures gradually become brighter and clearer from top to bottom. In high-stage feature
maps, the proposed MLFGNet can clearly focus on the curvilinear structures, while they are almost invisible in
the comparison methods. In low-stage feature maps, the highlighted areas are mainly distributed around the
curvilinear structures with purer background in the proposed MLEGNet. While the comparison methods either
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Figure 10. The output feature maps of intermediate stages of the decoder path. (a) Two original images and the corresponding ground
truth; (b) and (c) feature maps for these two original images. From top to bottom: the feature maps of the proposed MLFGNet,
MDACN, U-Net and CE-Net. From left to right: Stage 3, Stage 2 and Stage 1 display the feature maps representing the incremental
refinement for nerve fiber segmentation.

loses alot of curvilinear structures, or the background is too cluttered. The final segmentation results also show
that our method can detect more nerve fibers. Overall, it can be observed from the comparison of each column
that the proposed MLFGNet has a stronger response than the comparison methods which proves the proposed
network has a higher ability to capture the curvilinear structure of nerve fibers and is more powerful in
suppressing the background interference.

4, Conclusion

In this paper, we propose an end-to-end deep learning based framework named MLFGNet for nerve fiber
segmentation in confocal corneal microscopy images. Based on the U-shape encoder—decoder structure, the
proposed multi-scale feature progressive guidance (MFPG) modules are embedded as skip connections, in
which information is progressively aggregated from high-level features to low-level ones to shrink the
information gap between different levels. A novel LFGA module is proposed and embedded into the top of the
encoder, which splits the feature map into m patches and pixel-wise correlation and linear dependency are
captured in parallel on each patch. LFGA module enables the network to pay attention to local feature
information and improves the network’s ability to discriminate nerve fibers with low contrast. The multi-scale
deep supervision (MDS) module is proposed to fully utilize the relationship between high-stage and low-stage
features for feature reconstruction in the decoder path. The proposed MLFGNet is evaluated on three CMM
image datasets and achieves state-of-the-art performance.

Although the proposed MLFGNet performs well for nerve fiber segmentation on three CCM image datasets,
there are still some limitations. The hyper-parameters such as patch number in the LFGA module and the trade-
off Ay in the loss function used in this paper may be invalid for new datasets due to the possible domain shift
problem and need to be re-tuned. The domain adaptive ability of the transfer learning (Sahu et al 2021) may be
adopted to relieve this problem. There is room for segmentation performance improvement.

Graph convolutions are good at capturing topology structure of the target (Shin et al 2019), which may help us
further improve the segmentation performance. In future work, we will still try to improve the nerve fiber
segmentation performance in both normal and pathological images, and we will further investigate the
tortuosity classification based on the nerve fiber segmentation results.
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