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Abstract
Objective. Corneal confocalmicroscopy (CCM) is a rapid and non-invasive ophthalmic imaging
technique that can reveal corneal nerve fiber. The automatic segmentation of corneal nerve fiber in
CCM images is vital for the subsequent abnormality analysis, which is themain basis for the early
diagnosis of degenerative neurological systemic diseases such as diabetic peripheral neuropathy.
Approach. In this paper, aU-shape encoder–decoder structure basedmulti-scale and local feature
guidance neural network (MLFGNet) is proposed for the automatic corneal nerve fiber segmentation
inCCM images. Three novelmodules includingmulti-scale progressive guidance (MFPG)module,
local feature guided attention (LFGA)module, andmulti-scale deep supervision (MDS)module are
proposed and applied in skip connection, bottomof the encoder and decoder path respectively, which
are designed frombothmulti-scale information fusion and local information extraction perspectives
to enhance the network’s ability to discriminate the global and local structure of nerve fibers. The
proposedMFPGmodule solves the imbalance between semantic information and spatial information,
the LFGAmodule enables the network to capture attention relationships on local featuremaps and the
MDSmodule fully utilizes the relationship between high-level and low-level features for feature
reconstruction in the decoder path.Main results. The proposedMLFGNet is evaluated on three CCM
imageDatasets, theDice coefficients reach 89.33%, 89.41%, and 88.29% respectively. Significance.
The proposedmethod has excellent segmentation performance for corneal nerve fibers and
outperforms other state-of-the-artmethods.

1. Introduction

The geometric and topological features such as length, density, and tortuosity of corneal nerve fibers are
important indicators for the early diagnosis of degenerative neurological systemic diseases such as diabetic
peripheral neuropathy (Daousi et al 2004,Mehra et al 2007, Tavakoli et al 2010a, Kang andKim2015, Li et al
2019), human immunodeficiency virus (Kemp et al 2017), Parkinson’s disease (Misra et al 2017), multiple
sclerosis (Petropoulos et al 2017) and various dementias (Ponirakis et al 2019, Testa et al 2020), inwhich the thin
nervefibers are affected first predominantly (Petropoulos et al 2020). Corneal confocalmicroscopy (CCM)
(Tavakoli et al 2010b) is a rapid andnon-invasive ophthalmic imaging technique that can reveal corneal nerve
fiberwell. As CCM imaging is widely and fRequently used in disease screening and clinical trials, automatic and
accuratemethods for corneal nervefiber segmentation inCCM images are urgently needed, which is the basis
for the quantitative analysis of geometric and topological features. Figure 1 shows someCCM images with
different intensity distributions, contrasts, and tortuosity levels inwhich corneal nerve fibers are curvilinear
structures with various orientations, lengths, and thicknesses. As can be seen from figure 1, corneal nerve fibers
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may appear very faint due to differences of imaging depth, andCCM images also contain small bright and non-
nervefiber structures (usually cells), which increases the challenge of identifying nerve fibers.

1.1. Traditionalmachine learning basedmethods
There aremany traditionalmachine learning basedmethods for corneal nervefiber segmentation including
filtering basedmethods (Dabbah et al 2010, 2011, Ferreira et al 2012, Poletti andRuggeri 2013, Annunziata et al
2016), clustering basedmethods (Scarpa et al 2008, Ronneberger et al 2015, Chen et al 2016, Lagali et al 2018) and
classification basedmethods (Wang et al 2020, Zhong et al 2022). (1) Filtering basedmethods: Dabbah et al
proposed a dual-model corneal nerve fiber detection algorithmbased onGabor andGaussian filters (Dabbah
et al 2010). They proposed amulti-scale adaptive dual-model based detection algorithm later, which utilized the
curvilinear structure property of the nerve fibers (Dabbah et al 2011). Ferreira et al proposed awavelet transform
filtering based phase symmetry analysis to identify the nerve structures and usedmorphological operations for
nerve reconstruction, inwhich the reconstruction performance dependents on the selection of correct seed
points and needs sophisticated post-processing (Ferreira et al 2012). (2)Clustering basedmethods: Poletti et al
identified a set of seed points and connecting seeds bymeans ofminimumcost paths to trace nervefibers (Poletti
andRuggeri 2013). Aunnunziata et al proposed a hybrid nervefiber segmentationmethod, which consisted of a
scale and curvature-invariant ridge detector based appearancemodel and aK-means clustering based context
filters. It was specifically designed for tortuous and fragmented structures and the segmentation results were
used for the further tortuosity estimation (Annunziata et al 2016). Scarpa et al proposed a nerve tracingmethod
based onGaborfilter and fuzzy C-means clustering, inwhich several post-processing procedures were adopted
to remove false recognitions and to link sparse segments into continuous structures (Scarpa et al 2008). (3)
Classification basedmethods: Chen et alused dual-model filter and dual-tree complexwavelet transformbased
feature descriptors to training the neural network/random forest for nervefiber detection. The detection results
were used for the evaluation of nervefiber quantification (Chen et al 2016). Lagali et al proposed a support vector
machine basedmethod for nervefiber recognition (Lagali et al 2018). As traditionalmachine learning based
methods are not end-to-end, they are generally less efficient and accurate.

1.2.Deep learning basedmethods
With deep learning showing its strong superiority,more andmore studies have focused on convolutional neural
network based networks to segment structures with curvilinear characteristics, such as nerve fiber and blood
vessel. There are few deep learning basedmethods focusing on corneal nerve fiber segmentation. Considering
blood vessels and nerve fibers are both curvilinear structures with similar characteristics, it is worth learning
from themethods for blood vessel segmentation task. There aremanymethods for retinal vessel segmentation
based onU-shape encoder–decoder structure (Ronneberger et al 2015). Zhong et al proposedMMDC-Net to
extractmulti-layer andmulti-scale information to sharpen the vessel details for retinal vessel segmentation
(Zhong et al 2022).Wang et al proposed RVSeg-Net with dilated convolution for retinal vessel segmentation
(Chen et al 2017,Wang et al 2020). However, the use of dilated convolutionmay lead to the loss of detailed vessel
informationwhile increasing the receptive field. Sun et al proposedUCR-Net to fuse context attention

Figure 1.Corneal confocalmicroscopy(CCM) images with different intensity distributions, contrasts and tortuosity levels.
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informationwith context attention explorationmodule and global and spatial attentionmodule to capture
context features for vessel segmentation (Sun et al 2022). Gu et al proposedCE-Net which used the pretrained
ResNet as backbone andwas embeddedwith context extractormodule for vessel segmentation (He et al 2016,
Gu et al 2019). But five downsampling operations in ResNetmay destroy the structure of thin vessels. Feng et al
proposedCPFNet which combined twopyramidalmodules to fuse global andmulti-scale context information
and shew good performance on four challengingmedical image segmentation tasks including retinal linear
lesion segmentation in indocyanine green angiography (ICGA) images (Feng et al 2020). There are also some
networks based on theU-shape encoder–decoder structure for the corneal nervefiber segmentation. U-Netwas
directly used for corneal nervefiber segmentation in (Colonna et al 2018,Williams et al 2020) for the following
analysis. Zhang et al incorporated attention gatemodules to improve the network’s ability to distinguish the
nervefiber frombackground.However, this network did not take advantage ofmulti-scale information, which
is important for the simultaneous segmentation of thick and thin nerve fibers (Zhang et al 2020).Mou et al
proposed theCS-Net (Mou et al 2019) embeddedwith channel and spatial attentionmodule to capture the
attention relationship in channel direction and spatial direction for nervefiber centerline tracing, whichwas
later extended toCS2 -Net (Mou et al 2021) for dealingwith 3D curvilinear structure segmentation. Chen et al
developed amodifiedUNet++ (Zhou et al 2018)model (by adding skip connections in the upsampling path) for
nervefiber segmentation and developed a centerline extraction algorithmbased on neighborhood statistics
(Chen et al 2021). However, the added dense skip connections inU-Net++ did not result in a significant
improvement in segmentation performance. Yang et al proposed amulti-discriminator adversarial
convolutional network (MDACN), where both the generator and the two discriminators emphasizemulti-scale
feature representations, combinedwith an improved loss functionwhich enables the network to paymore
attention to thin fibers (Yang et al 2021).

1.3.Overview and contributions
The difficulty of nervefiber segmentation inCCM imagesmainly lies in the thin and faint nervefibers and the
low contrast of the images. To address these difficulties, we propose a novelmulti-scale and local feature
guidance neural network (MLFGNet) embeddedwith three novelmodules, includingmulti-scale progressive
guidance (MFPG)module, local feature guided attention (LFGA)module, andmulti-scale deep supervision
(MDS)module, which are designed frombothmulti-scale information fusion and local information extraction
perspectives to enhance the network’s ability to discriminate the global and local structure of nerve fibers. In
order to recovermore thin and faintfiber related information in the decoding stage and suppress background
noise, theMFPGmodule is designed, which uses high-level features to guide low-level features and aggregates
information level by level to shrink the information gap between different levels progressively. In order to
improve the network’s ability to discriminate nervefibers with low contrast, the LFGAmodule is proposed.
LFGAmodule first splits the featuremap into m patches. Then pixel-wise correlation and linear dependency are
captured in parallel on each patch, which enables the network to paymore attention to local features. To achieve
the efficient optimization of the network during training, theMDSmodule is designed, which allows the
gradient information toflowbetween different stages in the decoder sufficiently in the backpropagation. The
main contributions of this paper are as follows:

(1) Wepropose a novelMLFGNet equippedwithMFPG, LFGA, andMDSmodules for corneal nerve fiber
segmentation.

(2) From the perspective of taking full use of features fromdifferent layers and scales, the proposedMFPG
module can solve the imbalance between the semantic information and spatial informationwhich enhances
the network’s ability to recover the structure of nerve fibers, and theMDSmodule can fully utilize the
relationship between high-level and low-level features for feature reconstruction in the decoder pathwhich
further optimizes the performance of the network and improves its optimization efficiency.

(3) From the perspective of highlighting local features, the proposed LFGAmodule enables the network to
capture pixel-wise correlation and linear dependency on local featuremaps, which can improve the
network’s ability to discriminate faint and thin nerve fibers.

(4) The proposedMLFGNet is evaluated on two public corneal nerve fiber datasets and one in-house dataset
and achieves state-of-the-art segmentation performance.

The rest of this paper is organized as follows: in section 2, we introduce the detailed structure of the proposed
MLFGNet. Section 3 presents experimental settings, and the results, including ablation experiments and
comparison experiments with state-of-the-artmethods. Conclusion is presented in section 4.
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2.Methods andmaterials

2.1.Overview of the architecture ofMLFGNet
Figure 2 shows thewhole framework of the proposedmulti-scale feature guidance neural network (MLFGNet),
which is based on aU-shape encoder–decoder structure and consists offive parts: the encoder path, themulti-
scale progressive guidance (MFPG)module, the LFGAmodule, theMDSmodule, and the decoder path.

2.2. Feature encoder and decoder
The encoder path includes four levels. As can be seen from figure 1 that nervefiber is a kind of thin and
curvilinear structure, keeping its spatial information asmuch as possible while extracting its deep semantic
information is essentially necessary. For this purpose, in the first two levels (Level 1 and 2) of the encoder, we use
conv-block asU-Net (Ronneberger et al 2015) to extract spatial features, which consists of two consecutive 3× 3
convolutions, batch normalization, andReLu activation. In the last two levels (Level 3 and 4) of the encoder, pre-
trained ResNet layers are employed to extract deep semantic features. In the decoder stage, the decoder fuses the
featuremaps from the corresponding encodermodule through skip connection and then upsamples the fused
featuremap via bilinear upsampling.

2.3.Multi-scale feature progressive guidancemodule
In the decoder path, the semantic and spatial informationwill gradually lose in the process of feature
upsampling. To address this problem,U-Net (Ronneberger et al 2015) introduces skip connection to recover
this information. However, some previous researchers have found that the simple fusion of low-level and high-
level features could be less effective due to the information gap between different levels (Zhang et al 2018, Guo
et al 2019). These studies tried to deal with this problem (Feng et al 2020, Xu et al 2020), but they simply
upsampled the deep features and concatenatedwith the shallow features, inwhich the information gap between
different levels was not fully considered. In this paper, we propose a novelmulti-scale feature progressive
guidance (MFPG)module, inwhich information is progressively aggregated fromhigh-level features to low-
level ones to shrink the information gap between different levels.MFPGmodule can effectively suppress
background noise and retain detailed spatial and semantic information.

Figure 3 shows theMFPGmodule between Level 1 of the encoder path and Stage 1 of the decoder path.
Given a featuremap Î ´ ´X C H W

3
3 3 3 (C3 represents the channel number of X ,3 and H3 andW3 represent the

height andwidth of X3) fromLevel 3 of the encoder and an upsampling ratio k ( k is set to 2 here). First, a
dynamic upsamplingwas implemented instead of interpolation upsampling. To be specific, let X3 through a
content encoder layer (composed of consecutive 3×3 convolution, batch normalization, andRelu activation)
and generate a new featuremap Î ´ ´ * *X .C k k H W

3
En 2 3 3 Then, sub-pixel convolution (Shi et al 2016)with stride

k

1 (k= 2) is used to transform X3
En to Î ´ ´ * *X ,C H k W k

3
Up 2 3 3 which is learnable andmore flexible than bilinear

upsampling. Concatenate X3
Up with Level 2 featuremap X2 to generate Î ´ ´ *X ,C H W

2
Guide 2 2 2 2 which integrates

Figure 2.The overall architecture of the proposedMLFGNet. The original image is fed into the encoder to obtain the high-level
features, and the local attention information is captured the by the proposed local feature guided attention (LFGA)module. Next, the
features are recovered by the decoder, themulti-scale information flows are introduced by the proposedmulti-scale progressive
guidance (MFPG)module.Meanwhile, themulti-scale deep supervision (MDS)module is introduced as deep supervision
mechanism. The final predicted result is obtained via a threshold segmentation operationwith threshold of 0.5.
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the feature information from the local level (Level 2) and the higher level (Level 3).We also let X2
Guide through a

content encoder layer to generate a new featuremap Î ´ ´ * *X C k k H W
2
En 1 2 2 and use sub-pixel convolution to

transform it to Î ´ ´ * *X .C H k W k
2
Up 1 2 2 Then concatenate X2

Up to Level 1 featuremap X1 to generate

Î ´ ´ *X ,C H W
1
Guide 2 1 1 1 which fuses the features from X ,1 X2, and X3 progressively and are both rich in spatial

details and semantic information, solving the nuisance of featuremismatch caused by information gap between
different levels. Finally, we use a 1× 1 convolution to adjust the channel of X1

Guide to C1 and get the output
feature Î ´ ´X .C H W

out
1 1 1 The process can be formulated as follows,

= Î ´ ´⎡
⎣

⎤
⎦⟦ ⟧∮ ( ) ( ) *X X xconcat , Sub 1C H W

2
Guide

2 conv 3
2 2 2 2

= Î ´ ´⎡
⎣

⎤
⎦⟦ ⟧∮ ( ) ( ) *X X Xconcat , Sub 2C H W

1
Guide

1 conv 2
Guide 2 1 1 1

= Î ´ ´⟦ ⟧ ( )X f X 3C H W
out 1

Guide 1 1 1

Where [·]Sub_conv means sub-pixel convolution, ∮ (·)means content encoder operation. ⟦ · ⟧concat means
concatenation operation. ⟦ · ⟧f means 1×1 convolution.

2.4. Local feature guided attentionmodule
Due to the difference in imaging depth, the intensity of corneal nerve fibers inCCM images often varies greatly,
whichmeans that the contrast between nervefibers and the background varies greatly. In order to enable the
network to pay attention to local feature information and improve the network’s ability to discriminate nerve
fibers with low contrast, inspired by (Shi et al 2016,Wang et al 2018, Yuan et al 2021,Hou et al 2020), a novel
LFGAmodule is proposed, which splits the featuremap intom patches and pixel-wise correlation and linear
dependency are captured in parallel on each patch. Figure 4. shows the architecture of the LFGAmodule, which
mainly consists of linear dependency capture path and pixel-wise correlation capture path.

Let Î ´ ´X C H W
in

0 0 represent the original input feature and Î Î´ ´ [ ]P i m, 1,i C H W
thth represent the ith

patched featuremap , inwhichCdenotes the number of channels, H0 andW0 are the height andwidth of Xin

andH andW are the height andwidth of Pith respectively ( = =/ /H H m W W m, ,0 0 m is set to 16 in this
paper). In the linear dependency capture path, horizontal and vertical pooling layers are applied to the input
feature Î ´ ´Pi C H Wth first to generate four new featuremaps Î ´ ´P P,x

i
x
i C W

1 2
1th th (x1 and x2 representmax-

pooling and average-pooling in horizontal direction respectively) and Î ´ ´P P,y
i

y
i C H

1 2
1th th (y1 and y2 represent

max-pooling and average-pooling in vertical direction respectively), which represent the linear dependency
features captured in the horizontal and vertical directions respectively. Second, P P P, ,x

i
x
i

y
i

1 2 1
th th th and Py

i
2
th are

expanded to original image size, concatenated and followed by a 1×1 convolution and sigmoid activation to
obtain the attentionmap ¢ Î ´P ,xy

H W Third, element-wisemultiplication is performed betweenP and the

Figure 3.Themulti-scale feature progressive guidance (MFPG)module. Taking Stage 1 as an example,MFPGuses high-level features
to guide low-level features and aggregates information level by level to shrink the information gap between different levels
progressively.
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attentionmap ¢Pxy to generate a new featuremap P ,xy
ith which fuses linear dependencies both in horizontal and

vertical directions. Fourth, a new feature Î ´ ´Pz
i C 1 1th is obtained from Pith via a global average pooling layer

followed by sigmoid activation to capture the global information. Finally, Pz
ith ismultipliedwith Pxy

ith to generate
the output featuremap P ,xyz which cannot only capture linear dependencies fromdifferent directions, but also
obtain the global information. The construction of the linear dependency capture path can be formulated as
follows,

d¢ = Î ´⟦ ( [ ])⟧ ( )P f P P P Pconcat , , , 4xy x
i

x
i

y
i

y
i H W

1 2 1 2
th th th th

= ¢ Î ´ ´⟦ ⟧ ( )P P PMul , 5xy
i i

xy
C H Wth th

d= Î ´ ´⟦ ( ) ⟧ ( )P P PMul , , 6xyz
i

z
i

xy
i C H Wth th th

where d (·)means sigmoid activation, (·)f means 1×1 convolution, ⟦ · ⟧Mul means element-wise
multiplication, [·]concat means concatenation operation.

In pixel-wise correlation path, the input featuremap Î ´ ´Pi C H Wth is reshaped to Î ´Q ,C N Î ´K C N

and Î ´V C N first, whereN=H×W. ¢Eij is obtained by applying a softmax layer on thematrixmultiplication
of the transpose ofQ andK, which denotes the jth position’s impact on the ith position. Second,matrix

multiplication is performed between ¢Eij andV to obtain the attention enhanced feature and reshape it to
´ ´C H W to construct the pixel-wise correlation based feature P ,QKV

ith which can help the pixels belonging to the
nervefibers promote each other and enhance the contrast between nervefibers and background. The acquisition
of the pixel-wise correlation can be formulated as follows,

¢ =
å

Î
=

´
( · )

( · )
( )E

Q K

Q K

exp

exp
7ij

y
T

x

x
N

y
T

x

N N

1

å= ¢ Î
=

´ ´ ( )P V E 8QKV
i

i

N
i ij

C H W
1

th

Finally, the linear dependency feature P ,xyz
ith the pixel-wise correlation feature PQKV

ith and the original input

feature Pith are added to get feature P .i
out

th Pi
out

th features are reorganized into the final global reconstructed feature
X ,out

LFGA

= + + Î ´ ´ ( )P P P P 9i
xyz
i

QKV
i i C H W

out
th th th th

å= Î
=

´ ´⟦ ⟧ ( )R X P 10
i

m
i C H W

out
LFGA

1
out

th

th 0 0

where (·)R means the reorganization operation.

Figure 4. Local feature guided attention (LFGA)module. Pixel-wise correlation and Linear dependency are captured on local feature
map to improve the network’s ability to discriminate nerve fibers.
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2.5.Multi-scale deep supervisionmodule
There are some empirical evidences demonstrating that the deeper the neural network, themore difficult it is to
be optimized.Many previous studies utilized deep supervisionmechanism to alleviate this problem (Fu et al
2018,Qin et al 2020,Wu et al 2021).M-Net (Fu et al 2018) generated side-output predictionmaps as deep
supervision, inwhich theweights for all the side-output layers are set equally. Thismay cause the ignorance of
the different characteristics of the different side-output layers. SCS-Net (Wu et al 2021) set weights adaptively for
the different side-output layers and got better performance. However, none of themhave considered the
relationship between high-level features and low-level features in the decoder path, which helps reduce the
semantic information gap between different stages.

To fully utilize the relationship between high-stage and low-stage features for feature reconstruction in the
decoder path, a novelMDSmodule is proposed, which is shown infigure 5. TheMDSmodule enables feature
map in each stage to interact with the ones in other stages to fuse information between low and high stages first.
Then, the fused featuremap is used to generate the side-outputs. Take the side-output of Stage 2 (Side_ 2) as an
example. Featuremap of Stage 3 isfirst up-sampled. Then, through a 1×1 convolution, it is concatenatedwith
the featuremap of Stage 2 to generate the fused featuremap. Finally, the side-output of Stage 2 (Side_ 2) is
generated by applying a 1×1 convolution to the fused featuremap. The side-outputs transfer semantic
information from the deep stages to the shallow ones, which can propagate effective information through
backward propagation and let the auxiliary loss better optimize the network. The side-outputs fromdifferent
stages can be formulated as follows,

y= ( [ ]) ( )Side_1 Up Stage3 11

j y= ( [ [ ] ( [ ]]) ( )Side_2 concat Up Stage2 , Up Stage3 12

Figure 5.Multi-scale deep supervision (MDS)module. Semantic information from the deep layers are transfered to the shallow ones
in the decoder path, which fully utilizes the relationship between high-level and low-level features for feature reconstruction.
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f y= Q( [ ( [ ]) ( [ ])]) ( )Side_3 concat Stage1, Up Stage2 , Up Stage3 13

where Side_1, Side_2 and Side_3 represent the side-outputs of Stage 1, Stage 2 and Stage 3 respectively, y (·),
j (·), f (·) andQ(·)mean 1× 1 convolutionwith parameters y,W j,W fW and QW respectively, (·)Up means
the bilinear interpolation, and ⟦ · ⟧concat means the concatenation operation.

2.6. Training and inference detail
To overcome the data imbalance problem, theDice loss is used as the segmentation cost function segL tomake
the network paymore attention to the foreground. The binary cross entropy (BCE) loss is used as the deep
supervision loss _ksideL to fully leverage themultiple side-outputs.

å

å

e

e
= -

+

+ +

=

=

( )
( )

g p

g p

1

2

14i

N

i i

i

N

i i

seg
1

1

L

å= - + - - =
=

· ( ) ( ) · ( )( ) ( )
N

g p g p k
1

log 1 log 1 1, 2, 3 , 15k
i

N

i i i iside_
1

L

whereN represents the total number of pixels in each featuremap, Î { }g 0,1i and Î [ ]p 0,1i represent the value
of the ith pixel in the ground truth and the predicted probabilitymap respectively. In order to speed up the
convergence in the network training, the Laplace smoothing factor e is added to ,segL is which is set to 1 in our
experiments.

The total loss function totalL adopted for the proposedMLFGNet is the combination of segL and ,_ksideL
which is defined as follows,

å l= +
=

( )16
k

ktotal seg
1

3

sidekL L L

where lk is a trade-off between segmentation loss segL and deep supervision loss ._ksideL In our experiments,
λ1= 1,λ2= 0.8 andλ3= 0.4.

2.7.Datasets
As shown in table 1, three CCM imageDatasets were used to evaluate the performance of the proposed
MLFGNet. Images in all threeDatasets were obtained byHeidelberg Retina Tomographwith a RostockCornea
Modulemicroscope. The size of all images is 384× 384. Thefield of view (FOV) is 400 μm× 400 μm.The
ground truth of three datasets aremanually labeled under the supervision of an ophthalmologist with extensive
clinical experience.

Dataset 1 is a private dataset acquired fromZhongshanOphthalmic Center, China, containing 90 two-
dimensional CCM images. Among them, 50 images were taken from four normal eyes and 40 from four eyes
with diabetic keratopathy. The collection and analysis of image datawere approved by the Institutional Review
Board of ZhongshanOphthalmic Center and adhered to the tenets of theDeclaration ofHelsinki.

Dataset 2 is a public CCM image dataset with 404 images, provided by theCixi Institute of Biomedical
Engineering, Chinese Academy of Sciences (Mou et al 2021). According to the tortuosity of never fiber, the
imageswere graded into levels 1–4. As there are only 24 images in level 4, 30CCM images are randomly selected
from each other three levels to keep the number of images of different levels balanced. So 114 images are
included inDataset 2.

Dataset 3 is also a public CCM image dataset provided by the Laboratory of Biomedical Imaging, University
of Padova, Italy (Scarpa et al 2011), which contains 30CCM images from30 normal or pathological subjects
(diabetes, pseudoexfoliation syndrome, and keratoconus).

Table 1.Details of the datasets used to evaluate the proposedmethod.

Datasets Number (384× 384) Tortuosity level (numbers) Public/Private Source

Dataset 1 90 Normal (50) pathological (40) Private ZhongshanOphthalmic Center

Dataset 2 114 Level 1 (30) Public Cixi Institute of Biomedical Engineering

Level 2 (30)
Level 3 (30)
Level 4 (24)

Dataset 3 30 Level 1 (10) Public University of Padova

Level 2 (10)
Level 3 (10)
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A four-fold cross-validation strategy is used to objectively evaluate the proposedMLFGNet, which is also
adopted in all the comparison experiments. ForDataset 1, the images were randomly divided into four groups
according to subjects, and each group contained both normal and pathological subjects. ForDataset 2 and
Dataset 3, the images were randomly divided into four folds according to the levels of tortuosity.

2.8. Evaluationmetrics
Five evaluationmetrics includingDice, intersection over union (IoU), sensitivity (Sen), specificity (Spe) and area
under the ROC curve (AUC) are employed in our experiments. To evaluate the statistical significance of the
improvement, theWilcoxon signed-rank test between the proposedMLFGNet and othermethods is conducted
onDice coefficient in both comparison and ablation experiments.

2.9. Implementation details
All the experiments are implemented on the public Pytorch platform andNVIDIARTX2080Ti with 11GB
memory. In the training process, stochastic gradient descent (SGD) algorithmwith poly learning rate policy is
used to optimize theweights of the network. The learning rate lr is as follows,

= ´ -⎜ ⎟
⎛
⎝

⎞
⎠

( )lr lr
Iter

Iter
1 17b

t

p

where Iter and Itert represent the current number of iterations and the total number of iterations respectively.
The basic learning rate lrb is set to 0.01 and the declining index p is set to 0.9. The batch size is set to 2 and the
epochs is set to 80.

3. Results and discussion

3.1. Ablation experiments
3.1.1. Ablation experiments about the proposedmodules
Eight ablation experiments about the proposed LFGAmodule,MFPGmodule, andMDSmodule are conducted
onDataset 1, Dataset 2, andDataset 3, including Baseline (only including the encoder path and the decoder path
shown infigure 2), BaselinewithMDSmodule (Baseline+MDS), Baseline with LFGAmodule (Baseline+
LFGA), BaselinewithMFPGmodule (Baseline+MFPG), BaselinewithMDS and LFGAmodule (Baseline+
MDS+ LFGA), BaselinewithMFPG andMDSmodule (Baseline+MFPG+MDS), BaselinewithMFPG and
PAmodule (Baseline+MFPG+ LFGA) andBaseline withMFPG, LFGA andMDSmodule (Baseline+MFPG
+ LFGA+MDS, the proposedMLFGNet). The results of ablation experiments onDataset 1, Dataset 2, and
Dataset 3 are shown in tables 2, 3 and 4 respectively. ForDataset 1, comparedwith the Baseline, the
improvements onDice index are 0.91%, 0.35%, 0.63%. 1.11%, 1.44%, 0.93% and 1.99% and reach 88.25%,
87.69%, 87.97%, 88.45%, 88.78%, 88.27% and 89.33% respectively. ForDataset 2, as shown in table 3, the
improvements onDice index are 0.8%, 0.26%, 0.56%, 0.85%, 1.27%, 0.87% and 1.43% and reach 88.78%,
88.24%, 88.54%, 88.83%, 89.25%, 88.85%, and 89.41% respectively. ForDataset 3, as shown in table 4, the
improvements onDice index are 1.34%, 1.12%, 1.58%, 3.17%, 4.22%, 3.3%, and 5.48%, and reach 84.15%,
83.93%, 84.39%, 85.98%, 87.03% ,86.11%, and 88.29% respectively. All the p-values (Dice index,Wilcoxon
signed-rank test) are less than 0.05, indicating that all the proposedmodules have achieved significant
improvements comparedwith the Baseline.

Figure 6 shows the segmentation results of ablation experiments, which show that the proposedMFPG
module, LFGAmodule, andMDSmodule can improve the segmentation performance of the proposed network

Table 2.Ablation experiments about the proposedMFPG, LFGA, andMDSmodules onDataset 1 (Mean± Standard
deviation).

MFPG LFGA MDS Dice (%) IoU (%) Sen (%) AUC (%) p-value

◊ ◊ ◊ 87.345.02 77.857.55 86.755.34 92.78 2.69 —

◊ ◊ √ 88.254.82 79.297.39 88.724.93 93.75 2.50 <0.001

◊ √ ◊ 87.694.62 78.357.05 86.904.94 92.88 2.47 0.004

√ ◊ ◊ 87.974.69 78.827.19 88.594.65 93.65 2.31 <0.001

◊ √ √ 88.454.51 79.576.98 89.283.96 94.02 2.01 <0.001

√ ◊ √ 88.784.71 80.137.31 88.245.22 93.60 2.64 <0.001

√ √ ◊ 88.274.90 79.347.54 87.694.91 93.30 2.50 <0.001

√ √ √ 89.33 4.22 80.97 6.62 88.73 5.02 93.86 2.50 <0.001
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effectively. It can also be seen from figure 6 that with the addition of the proposedmodules, the breaks in the
topological structure of the nervefibers are gradually filled and the connectivity is higher.

3.1.2. Ablation experiments about backbones
Table 5 shows the ablation studies of different backbones on all three datasets. The results ofMLFGNet/Res
(only use ResNet34 as backbone) andMLFGNet/Conv-block (only use conv-block as backbone) on three

Figure 6.The segmentation results of ablation experiments in our study. (a)Original images; (b) detailed view; (c) ground truth; (d)
Baseline; (e)Baseline+MFPG; (f)Baseline+ LFGA; (g)Baseline+MDS; (h)Baseline+MFPG+LFGA; (i)Baseline+MFPG+
MDS; (j)Baseline+ LFGA+MDS; (k) proposed.

Table 3.Ablation experiments about the proposedMFPG, LFGA, andMDSmodules onDataset 2 (Mean± Standard
deviation).

MFPG LFGA MDS Dice (%) IoU (%) Sen (%) AUC (%) p-value

◊ ◊ ◊ 87.984.45 78.80 6.50 87.60 6.51 93.20 3.18 —

◊ ◊ √ 88.783.89 80.04 6.03 88.42 5.37 93.66 2.64 <0.001

◊ √ ◊ 88.244.17 79.19 6.31 87.54 6.44 93.19 3.14 0.004

√ ◊ ◊ 88.544.06 79.67  6.26 88.00  5.75 93.45  2.83 <0.001

◊ √ √ 88.83 4.32 80.15  6.58 88.25  6.62 93.57  3.22 <0.001

√ ◊ √ 89.25 3.84 80.79  5.99 89.02  5.51 93.96  2.71 <0.001

√ √ ◊ 88.85 3.82 80.14  5.98 87.85  5.81 93.40  2.84 <0.001

√ √ √ 89.41 3.74 81.05  5.88 88.38  5.87 93.69  2.87 <0.001

Table 4.Ablation experiments about the proposedMFPG, LFGA, andMDSmodules onDataset 3 (Mean± Standard
deviation).

MFPG LFGA MDS Dice (%) IoU (%) Sen (%) AUC (%) p-value

◊ ◊ ◊ 82.81 5.57 71.04 8.06 82.95 7.59 90.84 3.72 —

◊ ◊ √ 84.15 5.62 73.03 8.36 82.82 8.05 90.91 3.97 <0.001

◊ √ ◊ 83.93 5.00 72.61 7.35 83.38 6.99 91.13 3.42 0.004

√ ◊ ◊ 84.39 5.48 73.37 8.14 84.53 7.02 91.68 3.46 <0.001

◊ √ √ 85.98 5.27 75.77 8.06 86.85 5.41 92.85 2.72 <0.001

√ ◊ √ 87.03 5.08 77.38 7.82 86.53 6.37 92.81 3.19 <0.001

√ √ ◊ 86.11 4.63 75.90 7.03 86.07 7.03 92.52 3.49 <0.001

√ √ √ 88.29  4.11 79.27  6.51 87.43  6.09 93.31  3.04 <0.001
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datasets are not good, which indicate that only using conv-block as backbone is too shallow to extract deep
semantic information and lead to the limited receptive field, resulting in the degradation of the nervefiber
segmentation performance. Only using ResNet34 as backbone can deepen the depth of the network and increase
the receptive field.Meanwhile, it will destroy the thin and curvilinear structure of nerve fibers and thus lead to
the decline in performance. The best results can be obtained in the proposedMLFGNet, inwhich 2 conv-blocks
and 2ResNet34 layers are jointly applied. Specifically, 2 conv-blocks are used in the first and second layers of the
encoder (Level 1 and Level 2) to retainmore spatial information of nervefibers. 2 pre-trained ResNet34 layers
are used in the third and fourth layers (Level 3 and Level 4), which can deepen the network, expand the receptive
field, and obtain rich semantic information. This combination backbone strategy takes into account the spatial
information and semantic information of nerve fibers in the feature extraction and achieves the best
segmentation performance.

3.1.3. Ablation experiments about patch numbers in LFGAmodule
Table 6 shows the ablation studies about different patch numbers (m) of LFGAmodule onDataset 1. As can be
seen from table 6, toomany or too fewpatches will affect the segmentation performance.Whenm= 16, the best
result is achieved, whichmeans that the original featuremap is split into 16 patches.We selectm= 16 in all
experiments.

Figure 7 shows the predicted probabilities of pixels as curvilinear structures before and after applying the
proposed LFGAmodule respectively. As can be seen from figure 7, without LFGAmodule, the curvilinear
structures have not been highlighted consistently, whichmeans that the network does not extract significant
curvilinear features.With LFGAmodule, the network can focus on the curvilinear structures well and suppress
the influence of bright background noise, whichmeans that the LFGAmodule can extract and aggregate the
curvilinear structure features and enhance the network’s ability to distinguish nervefibers.

3.2. Comparison experiments
In order to evaluate the performance of our proposedMLFGNet, the proposed segmentation framework is
comparedwith some state-of-the-art deep learning based segmentation networks, including CS-Net (Mou et al
2019), CPFNet (Zhang et al 2020), U-Net++ (Zhou et al 2018), U2-Net (Qin et al 2020), CE-Net (Colonna et al
2018), U-Net (Chen et al 2017), AttentionU-Net (Scarpa et al 2011),MDACN (Guo et al 2019), andMMDC-Net
(Chen et al 2017). All the experimental implementation details are kept consistent for fair including four-fold
cross validation strategy, learning rate strategy, batch size, etc. The comparison experiment results on the three
datasets are shown in tables 7, 8, and 9 respectively. As can be seen from the tables, the proposedMLFGNet

Table 5.Ablation experiments about different backbones (Mean± Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%)

Dataset 1

MLFGNet/Res 88.37 3.67 79.46 5.68 87.49  4.80 93.24 2.30

MLFGNet/Conv-block 88.32 4.54 79.27 7.01 88.10  4.80 93.46 2.42

MLFGNet 89.33  4.22 80.97  6.62 88.73  5.02 93.86  2.50

Dataset 2

MLFGNet/Res 87.57 3.96 78.10 5.96 86.90  6.24 92.83 3.02

MLFGNet/Conv-block 88.65 4.10 79.84 6.30 87.93  5.93 93.43 2.91

MLFGNet 89.41  3.74 81.05  5.88 88.38  5.87 93.69  2.87

Dataset 3

MLFGNet/Res 86.85 4.96 77.08 7.62 85.70  7.14 92.42 3.54

MLFGNet/Conv-block 87.31 5.05 77.81 7.78 86.45  7.37 92.79 3.67

MLFGNet 88.29  4.11 79.27  6.51 87.43  6.09 93.31  3.04

Table 6.Ablation experiments about different patch numbers in LFGAmodule onDataset 1 (Mean± Standard deviation).

m-value Dice (%) IoU (%) Sen (%) AUC (%)

1 88.52  4.57 79.70 7.05 88.48 4.47 93.68 2.25

4 88.18  4.93 79.19 7.51 87.12 5.49 93.04 2.76

16(selected) 89.33  4.22 80.97  6.62 88.73  5.02 93.86  2.50

36 88.55  4.61 79.74 7.10 87.58 4.80 93.29 2.41

64 88.20  4.91 79.22 7.52 87.18 5.27 93.06 2.68

144 88.32  4.87 79.40 7.43 87.60 5.07 93.27 2.56
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outperforms all the state-of-the-art networks onDataset 1, Dataset 2, andDataset 3. To evaluate the statistical
significance of the improvement, theWilcoxon signed-rank test is conducted onDice coefficient. As can be seen
from tables 8 and 9, all the p-values are less than 0.05, indicating that the proposedMLFGNet has achieved a
significant improvement comparedwith other networks onDataset 2 andDataset 3. As shown in table 7,
although the proposedMLFGNet reaches the best performance, the p-value between the proposedMLFGNet
andMDACN is 0.45, indicating that there is no significant difference between them. The possible reason is that
more than half of the CCM images inDataset 1 are normal (50/90), that is,most of theCCM images contain
nervefibers with low grades of tortuosity, which are relatively easy to be segmented. The proposedMLFGNet

Figure 7.The output of the proposed LFGAmodule on randomly select images. From left to right: the original image, the predicted
probabilities of pixels as curvilinear structure before and after applying the proposed LFGAmodule respectively.

Table 7.Comparison results onDataset 1 (Mean± Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value

CS-Net (Mou et al 2019) 84.95 6.44 74.33 8.97 84.15 5.74 91.42 2.93 <0.001

CPFNet (Feng et al 2020) 85.44 4.55 74.85 6.69 84.78 5.37 91.70 2.61 <0.001

U-Net++ (Zhou et al 2018) 86.90 5.23 77.20 7.80 85.57 5.61 92.23 2.84 <0.001

U2-Net (Qin et al 2020) 87.15 5.32 77.6  7.88 85.51 5.92 92.23 2.96 <0.001

CE-Net (Gu et al 2019) 87.25 4.28 77.63 6.49 86.44 5.13 92.62 2.50 <0.001

U-Net (Ronneberger et al 2015) 87.32 5.66 77.91 8.38 86.12 5.44 92.52 2.78 <0.001

MMDC-Net (Zhong et al 2022) 87.51 4.45 78.06 6.80 87.12 4.75 92.99 2.33 <0.001

AttentionU-Net (Oktay et al 2018) 87.42 4.97 77.98+7.48 87.16 5.18 92.98 2.59 <0.001

MDACN (Yang et al 2021) 89.21 4.13 80.77 6.48 88.40 4.90 93.72 2.45 0.45

MLFGNet 89.33  4.22 80.97  6.62 88.73  5.02 93.86  2.50 —

Table 8.Comparison results onDataset 2 (Mean± Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value

CS-Net (Mou et al 2019) 85.32 5.33 74.74 7.45 83.48 6.59 91.14 3.24 <0.001

CPFNet (Feng et al 2020) 85.13 4.31 74.34 6.26 83.53 6.56 91.08 3.19 <0.001

U-Net++ (Zhou et al 2018) 87.17 4.37 77.52 6.51 86.41 5.63 92.61 2.78 <0.001

U2-Net (Qin et al 2020) 87.46 4.19 77.95 6.36 86.21 6.28 92.55 3.07 <0.001

CE-Net (Gu et al 2019) 86.81 4.51 76.95 6.64 85.53 7.02 92.16 3.41 <0.001

U-Net (Ronneberger et al 2015) 87.79 4.71 78.51 6.82 86.62 6.51 92.77 3.20 <0.001

MMDC-Net (Zhong et al 2022) 87.61 4.42 78.21 6.69 86.24 5.74 92.57 2.82 <0.001

AttentionU-Net (Oktay et al 2018) 88.17 3.86 79.04 5.97 87.31 5.50 93.09 2.70 <0.001

MDACN (Yang et al 2021) 89.08 4.13 80.53 6.16 88.12 6.00 93.55 2.83 <0.001

MLFGNet 89.41  3.74 81.05  5.88 88.38  5.80 93.69  2.87 —
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achieves stable segmentation performance on all three datasets, indicating that our network is suitable for nerve
fiber segmentationwith different grades of tortuosity.

To evaluate the effect of different grades of tortuosity on the nervefiber segmentation performance, theDice
indexes are re-calculated according to the tortuosity levels of the image on all three datasets respectively. The
performances of differentmethods on all three datasets are shown as box plots infigure 8. The proposed
MLFGNet shows the best performance on all three datasets, which also indicates our network is designed to deal
with nerve fibers fromboth normal subjects and pathological ones.

Figure 9 shows some nerve fiber segmentation results of different networks, including both normal (Row1)
and pathological (Row2 and 3) subjects. As can be seen from figure 9, allmethods can achieve good
segmentation results for thick nervefibers, butmost of themmay fail to detect the faint and thin ones. The
proposedMLFGNet can capture these faint and thin nerve fibers well due to the purposely designed LFGA

Figure 8.Performances of differentmethods on all three datasets. Box plots show themedian as the center lines, upper and lower
quartiles as box limits, whiskers asmaximumandminimumvalues, yellow diamond as average values. The y-axis represents the dice
coefficient, the x-axis represents the differentmethods.

Table 9.Comparison results onDataset 3 (Mean± Standard deviation).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value

CS-Net (Mou et al 2019) 81.37 6.30 69.05 8.90 80.90 7.14 89.80 3.57 <0.001

CPFNet (Feng et al 2020) 81.90 5.15 69.66 7.36 81.20 7.61 89.93 3.78 <0.001

U-Net++ (Zhou et al 2018) 83.95 5.84 72.76 8.57 82.49 8.28 90.74 4.09 <0.001

U2-Net (Qin et al 2020) 83.72 5.78 72.40 8.47 82.54 7.84 90.74 3.86 <0.001

CE-Net (Gu et al 2019) 82.92 5.81 71.22 8.28 82.25 8.34 90.53 4.11 <0.001

U-Net (Ronneberger et al 2015) 85.14 5.41 74.51 8.15 84.20 7.09 91.61 3.53 <0.001

MMDC-Net (Zhong et al 2022) 84.46 4.99 73.42 7.48 84.30 5.45 91.63 2.65 <0.001

AttentionU-Net (Oktay et al 2018) 84.35 5.67 73.34 8.47 83.07 7.82 91.03 3.87 <0.001

MDACN (Yang et al 2021) 87.62 4.27 78.22 6.78 86.79 5.39 92.97 2.65 <0.001

MLFGNet 88.29  4.11 79.27  6.51 87.43  6.09 93.31  3.04 —
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module, which canmake the network paymore attention to local feature information and improve its ability to
discriminate nerve fibers with low contrast. The segmentation results of the proposedmethod are of higher
continuity, withmore faint and thinfiber segments detected.

To verify the robustness of the proposedMLFGNet, a cross-dataset evaluation is performed, inwhich
Dataset 2 (114 images) is used as the training set, Dataset 3 (30 images) is adopted as the validation set, and
Dataset 1 (90 images) is used as the test set. The same cross-dataset evaluation strategy is also adopted for other
methods. As shown in table 10, the proposedMLFGNet achieves the best performance with an averageDice
coefficient of 88.12%. The p-value of theWilcoxon signed-rank test indicates that there is no significant
difference between the proposedMLFGNet andMDACN. The possible reason is that the proportion of thick
nervefibers is generally higher than that of thin ones in theCCM images, whichmeans although ourmethod
segments thin nervefibers better thanMDACN, theDice index is not obviously improved.However, figure 9
shows that the segmentation results of the proposedmethod have fewer breaks and thus better topological
connectivity.

To further verify the effectiveness and superiority of the proposedmethod, the intermediate featuremaps
fromdifferent stages of the decoder path in our proposedMLFGNet and three state-of-the-art networks
includingMDACN,U-Net andCE-Net are visualized. Figure 10(a) are the original images and the
corresponding ground truth. As shown infigures 10(b) and (c), by analyzing and comparing the nerve fibers in
the attentionmaps fromStage 1 to Stage 3, we note that the proposedmodel can focus on curvilinear structures.
The curvilinear structures gradually become brighter and clearer from top to bottom. In high-stage feature
maps, the proposedMLFGNet can clearly focus on the curvilinear structures, while they are almost invisible in
the comparisonmethods. In low-stage featuremaps, the highlighted areas aremainly distributed around the
curvilinear structures with purer background in the proposedMLFGNet.While the comparisonmethods either

Figure 9. Segmentation results of differentmethods. (a)Original images; (b) detailed view; (c) ground truth; (d) the proposed
MLFGNet; (e)MDACN; (f) attentionU-Net; (g)U-Net; (h)U2-Net; (i)U-Net++; (j)CE-Net; (k)CS-Net; (l)MMDC-Net.

Table 10.Cross-dataset evaluation (Dataset 2: training set, Dataset 3: validation set, andDataset 1: test set).

Methods Dice (%) IoU (%) Sen (%) AUC (%) p-value

CS-Net (Mou et al 2019) 84.20 73.12 85.24 91.82 <0.01

CPFNet (Feng et al 2020) 85.59 75.02 86.46 92.45 <0.01

U-Net++ (Zhou et al 2018) 85.96 75.63 84.95 91.87 <0.01

U2-Net (Qin et al 2020) 86.37 76.29 85.19 92.01 <0.01

CE-Net (Gu et al 2019) 86.29 76.11 87.71 93.32 <0.01

U-Net (Ronneberger et al 2015) 85.90 75.56 86.45 92.52 <0.01

MMDC-Net (Zhong et al 2022) 87.56 78.10 87.61 93.16 <0.01

AttentionU-Net (Oktay et al 2018) 86.33 76.20 84.37 91.65 <0.01

MDACN (Yang et al 2021) 87.97 78.72 88.10 93.42 0.23

MLFGNet 88.12 78.98 87.94 93.37 —
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loses a lot of curvilinear structures, or the background is too cluttered. Thefinal segmentation results also show
that ourmethod can detectmore nerve fibers. Overall, it can be observed from the comparison of each column
that the proposedMLFGNet has a stronger response than the comparisonmethodswhich proves the proposed
network has a higher ability to capture the curvilinear structure of nervefibers and ismore powerful in
suppressing the background interference.

4. Conclusion

In this paper, we propose an end-to-end deep learning based framework namedMLFGNet for nervefiber
segmentation in confocal cornealmicroscopy images. Based on theU-shape encoder–decoder structure, the
proposedmulti-scale feature progressive guidance (MFPG)modules are embedded as skip connections, in
which information is progressively aggregated fromhigh-level features to low-level ones to shrink the
information gap between different levels. A novel LFGAmodule is proposed and embedded into the top of the
encoder, which splits the featuremap intom patches and pixel-wise correlation and linear dependency are
captured in parallel on each patch. LFGAmodule enables the network to pay attention to local feature
information and improves the network’s ability to discriminate nerve fibers with low contrast. Themulti-scale
deep supervision (MDS)module is proposed to fully utilize the relationship between high-stage and low-stage
features for feature reconstruction in the decoder path. The proposedMLFGNet is evaluated on three CMM
image datasets and achieves state-of-the-art performance.

Although the proposedMLFGNet performswell for nervefiber segmentation on three CCM image datasets,
there are still some limitations. The hyper-parameters such as patch number in the LFGAmodule and the trade-
off lk in the loss function used in this papermay be invalid for new datasets due to the possible domain shift
problem andneed to be re-tuned. The domain adaptive ability of the transfer learning (Sahu et al 2021)may be
adopted to relieve this problem. There is room for segmentation performance improvement.
Graph convolutions are good at capturing topology structure of the target (Shin et al 2019), whichmay help us
further improve the segmentation performance. In future work, wewill still try to improve the nerve fiber
segmentation performance in both normal and pathological images, andwewill further investigate the
tortuosity classification based on the nerve fiber segmentation results.
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